Their commentary accompanies two linked studies on the topic in the same issue. One reports on whole-exome sequencing of more than 50,000 individuals from the Geisinger Health System in Pennsylvania and the analyses of rare variants with data from longitudinal electronic health records. They identified hundreds of people with rare “loss-of-function” gene variants that were linked to observable physiological characteristics, or phenotypes. The second article reports on a study that identified individuals in the same database with familial hypercholesterolemia, many of whom had not been diagnosed or treated. “These results demonstrate the enormous potential of this approach for promoting scientific biomedical discovery and influencing the practice of clinical medicine,” the authors wrote.
Because sequencing ever-larger datasets of human exomes -- and full genomes -- has become faster, more accurate, and less expensive, researchers can find rare genetic variants more quickly. And then matching these rare genetic finds to EHR phenotype data has the potential to inform health care in important ways. “Many single-gene disorders like familial hypercholesterolemia [FH] are under-diagnosed,” Rader said. “Once an individual with a single-gene disorder is identified, not only can that person be placed on appropriate medical intervention, but we can also screen his or her extended family members to see who else carries the mutant gene and may benefit from preventative approaches.” He cites a recent list of 59 “medically actionable” genes, curated by the American College of Medical Genetics and Genomics (ACMG), in which loss of function mutations can lead to specific medical interventions. For example, individuals from the extended family of a person found to have FH who also carry the mutation should have their cholesterol checked and be placed on medication to reduce cholesterol.
“Identifying rare variants can also contribute to our understanding of more common, complex disorders such as Type 2 diabetes or chronic kidney disease,” Rader said. “These efforts will one day reveal the fundamental value of what the genome contains for health and disease and pave the way for precision medicine in every clinic and hospital.”
Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $5.3 billion enterprise.
The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 18 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $373 million awarded in the 2015 fiscal year.The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania and Penn Presbyterian Medical Center -- which are recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report -- Chester County Hospital; Lancaster General Health; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.
Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2015, Penn Medicine provided $253.3 million to benefit our community.