Newswise — Pests and diseases may reduce global wheat yields by over 20%. A study published April 11th in the open access journal PLOS Biology by Sergio Latorre at University College London, UK and colleagues suggest that genomic surveillance may be an effective disease management tool with the ability to trace lineages of emerging crop diseases, and to identify genetic traits for breeding disease-resistant lines.

Wheat crops across the globe are threatened by wheat blast, an emerging fungal disease. However, disease-management strategies have been unsuccessful. In order to better understand emerging pathogen genotypes and lineages, researchers conducted both genome analyses and laboratory experiments. They genotyped and sequenced the genome of the pandemic wheat blast fungus and tested different lines of wheat for genetic resistance to blast fungus and susceptibility to fungicide.

The researchers found that the recent emergence of wheat blast in Asia and Africa was caused by a single clonal lineage of the wheat blast fungus and that outbreaks in Zambia and Bangladesh originated independently. They also show that breeds of wheat that carry the Rmg8 gene are resistant to this fungal strain, and that the fungus is sensitive to the fungicide strobilurin. These findings highlight how genomic surveillance may help plant breeders more effectively select traits to develop disease-resistant lines.

The research may provide new tools to help counteract emerging plant pathogens. However, future studies are needed to address the likelihood of crop diseases evolving resistance to pesticides and fungicides and to evaluate other potential strategies that reduce reliance on chemical inputs.

According to the authors, “The emergence of variants that are more damaging than the current genotypes is probable within short timescales. This could happen either through mutations or sexual recombination with endemic blast fungus populations. Such variants could have increased virulence and fungicide tolerance thus adding to the difficulty in managing the wheat blast disease. These findings underscore the need for genomic surveillance to improve tracking and monitoring of the wheat blast fungus on a global scale and identifying variants of concern as soon as they emerge.”

Coauthor Sophien Kamoun adds, “This project builds on the paradigm—best illustrated by the COVID-19 pandemic—that genomic surveillance adds a unique dimension to the coordinated response to infectious disease outbreaks. We need to remain vigilant and continue genomics surveillance of wheat blast in Africa and Asia to identify Variants of Concern (VOCs) as soon as they emerge.”

#####

 

Citation: Latorre SM, Were VM, Foster AJ, Langner T, Malmgren A, Harant A, et al. (2023) Genomic surveillance uncovers a pandemic clonal lineage of the wheat blast fungus. PLoS Biol 21(4): e3002052

Author Countries: United Kingdom, Japan, Bangladesh, Zambia, Mexico, Switzerland, United States of America

Funding: see manuscript

Competing interests: We have read the journal’s policy and the authors of this manuscript have the following competing interests: KL is a founder of Floodlight Genomics, TI receives funding from Krishi Gobeshona Foundation of Bangladesh, and SK receives funding from industry and has filed patents on plant disease resistance.

 


About PLOS Biology

PLOS Biology is an open-access, peer-reviewed journal published by PLOS, featuring research articles of exceptional significance, originality, and relevance in all areas of biology. For more information visit , or follow @PLOSBiology on Twitter.

Media and Copyright Information

For information about PLOS Biology relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit .

PLOS Journals publish under a , which permits free reuse of all materials published with the article, so long as the work is cited. 

About PLOS 
PLOS is a nonprofit, Open Access publisher empowering researchers to accelerate progress in science and medicine by leading a transformation in research communication. We’ve been breaking boundaries since our founding in 2001. PLOS journals propelled the movement for OA alternatives to subscription journals. We established the first multi-disciplinary publication inclusive of all excellent research regardless of novelty or impact, and demonstrated the importance of open data availability. As Open Science advances, we continue to experiment to provide more opportunities, choice, and context for readers and researchers. For more information, visit.
 

­­Disclaimer

This press release refers to upcoming articles in PLOS Biology. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.