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of siderophores, effectively cutting off iron supply to pathogens
[19, 20]. Pseudomonas aeruginosa FP6, a biocontrol strain inhibiting
the fungal pathogen Rhizoctonia solani, lost almost all its inhibitory
activity against R. solani after FeCl3 supplementation, highlighting
the role of iron competition as the main mechanism for pathogen
control [20]. Extensive literature documents the variety and
functionality of siderophores produced by Pseudomonas spp.
[21, 22], as well as their contributions to disease prevention
[23]. Pyoverdines, a diverse class of non-ribosomal peptides
that possess the most complex chemical structures among
Pseudomonas siderophores, have been extensively studied, and
over 50 structurally distinct pyoverdines have been identified
[24]. The structural complexity of siderophores is noteworthy
for its diversity, exhibiting remarkable variation even within
a single bacterial strain [24]. Here we focused on Pseudomonas
spp. siderophores due to their great structural diversity and
substantial potential for biological control applications [25,
26]. Furthermore, pyoverdines are highly specific. Their uptake
requires very specific receptors, driving the same molecule to
promote or inhibit bacterial strains depending on their ability
to use it [27]. Thus, siderophore-mediated competition for iron
shapes ecological interactions between microorganisms [28]. In
the multispecies rhizosphere microbiome, these interactions
may ultimately affect the performance and health of plant
hosts [29, 30].

Although many studies have approached the importance of
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the pathogen R. solanacearum. Extensive research has illustrated
the pivotal role of siderophores produced by biocontrol agents in
the suppression of pathogenic bacteria, the level of suppression
positively correlating with increased siderophore production
[31, 46]. Consistent with these findings, we observed that the
production of competitive siderophores by Pseudomonas strains
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pathogen could stem from the constraints on growth antagonism
induced by limited iron availability.

Iron deficiency dramatically affects the utilization of metabolic
pathways related to iron, favoring iron-independent pathways
while curtailing iron-dependent ones [59
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Determining the siderophore production of
consortium members and bacterial consortia
Siderophore production in bacterial strains and consortia was
measured by chrome azurol S (CAS) assays, which gauge the
intensity of siderophores chelating ferric ions based on the result-
ing color change in the reaction mixture [67]. All Pseudomonas
strains and bacterial consortia were cultured (30◦C, 48 h, 170
r.p.m.) in MKB medium and iron-rich MKB medium (MKB + Fe),
respectively. Cell-free supernatants were obtained by centrifuga-
tion (6000 r.p.m. for 10 min) and subsequent filtration using a
0.22-μm filter and then assayed for siderophore production by a
modified version of the universal CAS assay developed by Schwyn
and Neilands [67]. Briefly, 100 μl of each cell-free supernatant
(three biological replicates for all 49 bacterial consortia) or fresh
medium as a control, was combined with 100 μl of the CAS assay
solution (containing 1.5 × 10−3 mM FeCl3·6H2O, 6 × 10−1 mM ade-
cyltrimethylammonium bromide, 4.307 g anhydrous piperazine,
and 1.5× 10−1 mM CAS) in a 96-well microplate. Following 1 h
of static cultivation at room temperature, the optical density at
630 nm (OD630) of cell-free supernatant (A) and the uninocu-
lated medium control (Ar) were measured using a spectropho-
tometer (SpectraMax M5, Sunnyvale, CA, USA). Deferoxamine
B siderophore was utilized as the standard to create standard
curves for assessing siderophore production in both Pseudomonas
strains and microbial communities. Employing the observable
color change of the CAS solution upon siderophore presence,
diverse dilutions of deferoxamine B siderophore, in combination
with OD630 measurements, were pivotal in constructing these
standard curves. Siderophore concentration was normalized as
deferoxamine (DFO) equivalent and expressed as log10DFO. To be
noted, the siderophore concentration of the supernatant collected
under iron-limited conditions required dilution with sterile water
due to saturation in the assay.

Determining the phloroglucinol production and
antibiotic gene expression of consortium
members under different iron conditions
Phloroglucinol (PG), an intermediate product of DAPG [68, 69], was
quantified in the supernatant using a method modified from a
previous study [70]. Seven Pseudomonas strains were cultured in
iron-rich and iron-limited media for 48 h, with each treatment
carried out in triplicate. Cell-free supernatants were collected as
mentioned above. To each sample (75 μl of supernatant), 25 μl
of HCl was added. Following this, 100 μl of cinnamaldehyde–HCl
reagent, comprising 0.2% 4-hydroxy-3-methoxy-cinnamaldehyde
in HCl:ethanol (1:3, v/v), was introduced to the solution, resulting
in a pink coloration in samples containing PG. The colorimet-
ric reaction was allowed to proceed for 2 h, after which the
absorbance was measured at 550 nm. The absolute concentration
of PG was subsequently determined by referencing a standard
curve constructed from varying concentrations of PG standards.

To determine the effect of iron deficiency on antibiotic gene
expression, the expression of the phlD gene was assessed under
different iron conditions by RT–qPCR. Seven Pseudomonas strains
were cultured in iron-rich and iron-limited MKB media for 48 h.
The total RNA of the bacteria was extracted according to the
protocol of the Bacterial RNA Kit (R6950, Omega, USA). The con-
centration and purity of RNA were determined using a NanoDrop
1000 spectrophotometer (Thermo Scientific, Waltham, MA, USA),
with A260/A280 and A260/230 ratio values of around 2 considered
adequate for inclusion in the study. cDNA was synthesized with
the HiScript

®
II Q RT SuperMix for qPCR (+gDNA wiper) Kit

(Vazyme, China). For RT–qPCR analysis, two primers specific to
the phlD gene were used: B2BF (5′-ACC CAC CGC AGC ATC GTT
TAT GAGC-3′

′

GU390462
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supernatants from 49 consortia were collected as described
above (Fig. 1A and B). The following three treatments were
set up to distinguish siderophore-mediated effects from other
metabolite-mediated effects [33]. (i) Iron-limited: 20 μl of cell-
free supernatant collected under iron-limited conditions was
added to 178 μl of MKB medium. This supernatant contained
total metabolites p Tf
5.9862 9467.9(m).to 178
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sound relationships were considered. All data analyses were
performed using R version 4.1.0.
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