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Just before a nucleus undergoes fission, a neck is formed between the emerging fission fragments. It is
widely accepted that this neck undergoes a rather violent rupture, despite the absence of unambiguous
experimental evidence. The main difficulty in addressing the neck rupture and saddle-to-scission stages of
fission is that both are highly nonequilibrium processes. Here, we present the first fully microscopic
characterization of the scission mechanism, along with the spectrum and the spatial distribution of scission
neutrons (SNs), and some upper limit estimates for the emission of charged particles. The spectrum of SNs
has a distinct angular distribution, with neutrons emitted in roughly equal numbers in the equatorial plane
and along the fission axis. They carry an average energy around 3� 0.5 MeV for the fission of 236U, 240Pu,
and 252Cf, and a maximum of 16–18 MeV. We estimate a conservative lower bound of 9%–14% of the total
emitted neutrons are produced at scission.
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Nuclear fission was experimentally discovered by Hahn
and Strassmann [1] in 1939. Later in 1939, it was named
and its main mechanism was explained by Meitner and
Frisch [2]. It is a quantum many-body process of extreme
complexity, with various parts of the process occurring at
vastly different timescales. The total time it takes, from the
moment a neutron initiates the formation of a compound
nucleus until all final fission products have attained their
equilibrium state after β decay, can be on the order of
billions of years [3], and is greater by enormous orders of
magnitude relative to the time it takes a nucleon to cross a
nucleus, Oð10−22Þ sec.

The compound system, formed by a low-energy neu-
tron [1] interacting with a target nucleus, evolves through
many distinct stages. The first stage is a relatively slow
quasiequilibrium evolution, that lasts until the compound
system [4] reaches the outer saddle point at ≈10−14 sec [3].
During this stage, the nucleus, with an initial prolate
intrinsic shape and axial symmetry, evolves into a nucleus
with triaxial shape, and eventually into a reflection asym-
metric and axially symmetric elongated shape near the outer
fission barrier [5]. The second stage is a highly nonequili-
brium evolution from saddle to scission [6–8], when the
primordial fission fragments’ (FFs) properties are defined
within a duration of ≈5 × 10−21 sec [3]. Even though this
second stage is much faster than the first stage, it corre-
sponds to rather slow dynamics, relative to the third
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available from fluctuations [20–24]. At the top of the outer
saddle the nucleus starts a relatively slow dissipative
evolution towards scission [6–8]. During this period,
the fissioning nucleus gets more elongated and the neck
becomes more and more pronounced. The nuclear fluid
behaves as nuclear molasses, with a very small collective
velocity [6–8], while at the same time the intrinsic
temperature of the system gradually increases. The bond
between the two fission partners slowly weakens until the
neck, which was still keeping them together, reaches a
critical small diameter of approximately 3 fm and ruptures,
exactly where the initial wrinkle formed much earlier at
the top of the outer saddle. This dramatic separation of the
two emerging FFs is a rather short-time event. For Brosa
et al. [25] scission was the defining stage of fission, where
the total kinetic energy (TKE) of the FFs is defined along
with the average FF properties. The Brosa model assumes
that the nucleus is a very viscous fluid, with a long neck
that ruptures at a random position, and is widely invoked
today in many phenomenological models [26–33], even
though it has no microscopic justification and its claimed
grounding in experimental data does not necessarily
support a unique interpretation. Additionally, the Brosa
random neck rupture model contradicts the theoretical
assumptions of other popular approaches, such as the
scission-point model of Wilkins et al. [34], where the FF
formation is based on statistical equilibrium [35,36], and
Brownian motion or Langevin models [14,17,37–39]. The
drama of scission is followed by unavoidable debris
characteristic of such dramatic separations, the scission
neutrons (SNs), envisioned as early as 1939 by Bohr and
Wheeler [40]. Potentially other heavier fragments, usually
termed as ternary fission products [41–43], are created as
well. We relegate a brief review of the history of SNs as
online Supplemental Material [44], with additional
references [41,42,45–88], where we also present many
more details of our study.

In these simulations, we started by placing the initial
compound nucleus near the top of the outer barrier in a very
large simulation volume, in order to allow the emitted
nucleons enough time to decouple from the FFs after the
neck rupture. We have performed a range of simulations for
235Uðnth; fÞ, 239Puðnth; fÞ, and 252CfðsfÞ, using the nuclear
energy density functional (NEDF) SeaLL1 [89] in simu-
lation volumes 482 × 120 and 482 × 100 fm3, with a lattice
constant of 1 fm, for further technical details see Ref. [90].
The SeaLL1 NEDF is defined by only eight basic nuclear
parameters, each related to specific nuclear properties
known for decades, and contains the smallest number of
phenomenological parameters of any NEDF to date [89,91].
We started the simulations at various deformations Q20 and
Q30, as listed in Ref. [44], near the outer fission barrier rim;
and see Refs. [6–8], where one can find more details about
how the FF properties vary with the choice of initial
conditions. Our simulation volume of 482 × 120 fm3

required the use of the entire supercomputer Summit
(27 648 GPUs), corresponding to 442 TBs of total GPU
memory, with further details provided in Ref. [44]. Despite
this, we still could not follow the emission of nucleons
for a long time, since the emitted nucleons are reflected
back at the boundary relatively rapidly, see the lowest two
rows of Fig. 1, where interference patterns emerge. In the
transversal direction the reflection from the boundaries
occurs earlier than along the fission axis, and that has
affected some of the properties of the nucleons emitted
perpendicular to the fission axis. However, the effect is
minor, see Ref. [44].

From here, we will concentrate on the dynamics of the
neck formation and rupture, followed by the emission of
nucleons, all treated within the time-dependent density
functional theory extended to superfluid fermionic sys-
tems [92]. The integrated neck density, shown in Fig. 2, is
defined as
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punctured balloon, which would rapidly escape the enclo-
sure, due to the presence of the nuclear “skin” and strong
surface tension, the nucleus behaves as a fluid. The surface
tension quickly “heals” the “wound,”



models. Additionally, it appears that the neck rupture has
similar dynamics for a large class of asymmetric fission
events, irrespective of the nucleus considered or the initial
conditions, beyond the top of the outer fission barrier.
This universality carries over to the emission of SNs, whose
signal always appears as three distinct clouds, one transverse
to the fission axis and two in front of each FF, in almost equal
proportions. The aspects of the neck dynamics discussed
above, can serve as a theoretical input for any semipheno-
menological approach to study FF properties [27–30].

The idea of SNs, proposed by Bohr and Wheeler [40],
is almost as old as nuclear fission itself. The existence of SNs
has been debated over the years [45,48,52,97–118], see also
Historical Note in Ref. [43], and their experimental con-
firmation is still an open question. While neutron properties
in earlier studies using simplified models [52,99,100] have
some features somewhat similar to what we find, they are
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