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where VNPL , VEPL
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where δre,IMU , δve,IMU
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multiple frequency GNSS receiver module was used to 
collect raw GNSS data at 10 Hz. And a Velodyne VLP-
16 LiDAR sensor was used to collect raw point cloud 
data. �e reference trajectories were determined by 

the RTK/INS tightly coupled post processing mode of 
NovAtel Inertial Explorer software with the raw data of 
a high-grade GNSS/IMU integrated navigator, Honey-
well HGuide N580, with gyroscope bias instability of 0.25 
(°)/h. In addition, the antenna 1 and 2 were connected 
with the BDStar Navigation receiver and the N580, 
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results of SE-GPR and other regression models over the 
training dataset are compared in Table 1. �e candidate 
fitting models include coarse tree, fine Gaussian Support 
Vector Machine (SVM), and ensemble boosted regres-
sion tree. It is clear that the Root Mean Square Error 
(RMSE) of SE-GPR is the smallest among these candidate 
fitting models. R-squared is another important evalua-
tion parameter with a value range between 0 and 1, and 
higher value indicates better fitting performance. It can 
be seen that the SE-GPR model provides the highest 
R-squared in fitting north, east, and down LO errors.

�e testing dataset was collected in the downtown 
area of Nanjing city, about 8 km away from the location 
of the collected training dataset, on April 29, 2024. �e 
vehicle trajectory of the testing dataset is shown in Fig. 
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period from 410 to 440 s. Generally, the weighting coef-
ficients vary correctly with the difference of GNSS posi-
tioning and LO errors.

Table 2 Description of the tested algorithms

Candidate algorithm Description

Basic GNSS/IMU/LO integration GNSS/IMU/LO are loosely integrated with an EKF. The measurement vector is constructed with GNSS 
based position, doppler shifts based velocity and LO based position of the vehicle

Weighted GNSS/IMU/LO integration GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector 
is constructed with the GNSS/LO weighting strategy based position and doppler shifts based velocity 
of the vehicle

Weighted GNSS/IMU/LO integration with LALC GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector is con-
structed with the proposed GNSS/LO weighting strategy based position and doppler shifts based 
velocity of the vehicle. Besides, the proposed LALC is implemented

Weighted GNSS/IMU/LO integration with NHC GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector is con-
structed with the proposed GNSS/LO weighting strategy based position and doppler shifts based 
velocity of the vehicle. Besides, the NHC is implemented

Proposed algorithm
(Weighted GNSS/IMU/LO integration 
with the LALC and NHC)

GNSS/IMU/LO are integrated in a loosely coupled mode with an EKF. The measurement vector is con-
structed with the proposed GNSS/LO weighting strategy based position and doppler shifts based 
velocity of the vehicle. Besides, the proposed LALC and NHC are implemented

Fig. 11 Positioning error comparison in the n-frame. Figure shows 
positioning errors of the candidate algorithms in the n-frame, 
with green lines representing the “basic GNSS/IMU/LO integration” 
algorithm, purplish red lines representing the “weighted GNSS/IMU/
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