Introduction I g . . (I ,), , g Ç , · · · · Ç ç ED), ((CD) g g , g - ... Ç , , Ç g g g

E D ¢ Ç ^{10,11}. I Ç g ç ¢ Ç , (.g., 🤇 , ...), Ç g 12,13 Е-, , Е D ç Ç , ç g E D ç Ç Ç Ç ¢ g^{14,15}. C g g g g

© The Author(s) 2023

ç g ç g . I Ç . I Ç Ç ç g g g . A D, Ι ç , , , , , , , I, I', II, II', Fg.<mark>K</mark>, H, III. ç ç I' II' , . ., I- -II Ç II- -III, Ç g *, ,* ç ç Ç , ç g

-

Ç

 $\mathbf{E} = \left\{ \begin{array}{c} \mathbf{E} \\ \mathbf{F} \\$

$$_{\rm C} = \left(rac{\widetilde{arepsilon}_{_{\rm c}} - \widetilde{arepsilon}_{_{\rm c}}}{\widetilde{arepsilon}_{_{\rm c}} + 2\widetilde{arepsilon}_{_{\rm c}}}
ight)$$

g, (_|5µ) < (. . Ç g Ç 0.045 %). B g 0, 14, , Ç 42 400 H. ç Fg Ç Ç 4 g -450 (Ç 617 (g.) Ç g () Ç C ç . . 1. . I I, Ç Ç Ç . A II, g 🤅 _|476 III, g 32.5%. g -617 Ç (26.3%, Ç Ç g g Ç g

I, II, III Fg. 4 , g *U* 0, 10.6, 35.4 ç, . . , . . $=400\,$ H . Fig. 4 Ç , **ç** , **ç** , , , A D.A g I, Ç 1. g ç ÇÇ . . I II, g, g g (34.9% 36.3% Ç 616 -476 , 🤤 -. . Ç gg III, g 527 Ç ç (g) 23.3%, III ç g , Ç_ Ç g Ç g **(**F**g**. 6).

g. g Fg. 4, AC 14400 H ç Ç "C" g , g 3:1 . A¶ Ç g Ι Ç .) ¢ g Fg. 5. A g ç. , g . g 0–168 μ g

Ç 1. g Ç A D g C g g AD, Ç Ç g g g ≤0.14 , ≥5¢ ≥170 ø g В 30 g Ç Ç g

Ç А g g g C C g g g 🤅 g g . F. g Ç g Ç g ,

Materials and methods

D ∦W

F.g. 1, ç ç Ç (I)-g - - -Ç g Ç 365 μ 🧳 60 µ Ç g 130μ, . g g , , , Ç g . Н Ç , _140 ava ¶ag H 2.5 %) (H , DC-002) (. . . . Ι -g. g

Н , -8 2075 / A) ç 140–150 μ -8 g a g 345 μ g 20 μ , g AD, g ... -8 g (AFG 1062, AC 1 g Ç Ç g A) , I < ., Ç g , ', C,). (A A-2042, Ag C .,

MW W

DI g ..., S, C ,) , C . (18.25 Ω $B_{\rm eff}$, $4\,\mu$), (, 5μ), ç g., C). G B C). , (,4µ) ç. , **ç** С 9 a. . . . 9 a С ((5°) , ° g A 🥵 D a a €a a g ≠ a €a a A. (gΙ g , C). 31. Ramos, A. et al. Ac electrokitetics: