

Fission-Fusion Dynamics in the Social Networks of a North American Pitviper

Journal:Ecology and EvolutionManuscript IDECE-2023-03-00417.R1Wiley - Manuscript type:Research ArticleDate Submitted by the
Author:ECE-2023-03-00417.R1

•	
3 4 5 6 7 8 9 10 11 12 13 14	away from dens—with different and fewer partners. Additionally, modules formed by individuals in the pairing network were frequently different from those in the parentage network, likely due to multiple mating, long-term sperm storage by females, and resultant multiple paternity. Further evidence for fission-fusion dynamics exhibited by this population—interactions were rare when snakes were dispersing to and traversing their spring-summer home ranges (to which individuals show high fidelity), despite ample opportunities to associate with numerous conspecifics that had highly overlapping ranges. Taken together, we show that long-term datasets incorporating SNA with spatial and genetic information provide robust and unique insights to understanding the social structure of cryptic taxa that are understudied.
15	
17 18 19 20 21 22 23	SCHOLARONE™ Manuscripts
24 25 26 27 28 29 30	
31 32 33 34 35 36	
37 38 39 40 41 42 43	
44 45 46 47 48 49	
50 51 52 53 54 55 56 56	
57 58 59 60	

1		
2		
3	1	Fission-Fusion Dynamics in the Social Networks of a North American Pitviner
4	2	Tission Tusion Dynamics in the Social Petrovicks of a Porth American Proper
5	2	
6	3	Sasna J. Tetziam ^{1,2} , Jeferson Vizentin-Bugoni ³ , Jinelle H. Sperry ^{1,4} , Mark A. Davis ^{2,4} ,
7	4	Rulon W. Clark ^{3, 6} , Roger A. Repp ⁷ and Gordon W. Schuett ^{3,8}
8	5	
9	6	¹ U.S. Army ERDC-CERL, Champaign, Illinois USA
10	7	² Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-
11	8	Champaign, Champaign, Illinois USA
12	9	³ Programa de Pós-Graduação em Biologia Animal, Instituto de Biologia, Universidade Federal
14	10	de Pelotas, RS, Brazil
15	11	⁴ Department of Natural Resources and Environmental Sciences University of Illinois at
16	12	Urbana-Champaign 1102 South Goodwin Avenue Urbana Illinois USA
17	12	⁵ Chiricohua Desert Museum, Podeo, New Maxico USA
18	13	Department of Pielogy Sen Diago State University Sen Diago California USA
19	14	⁷ NOAO, Terrera Arizara USA
20	15	NOAO, Tucson, Arizona, USA
21	16	^o Department of Biology _ Neuroscience Institute, Georgia State University, Atlanta, Georgia,
22	17	USA
23	18	
24	19	Sasha J. Tetzlaff: https://orcid.org/-0000-0001-5889-6573
25	20	Jeferson Vizentin-Bugoni: https://orcid.org/0000-0002-6343-3650
20 27	21	Jinelle H. Sperry: https://orcid.org/ 0000-0003-0929-1900
27	22	Mark A. Davis: https://orcid.org/0000-0001-9034-9430
20	23	Rulon W. Clark https://orcid.org/0000-0002-1100-1856
30	24	Gordon W. Schuett https://orcid.org/0000-0002-2133-3723
31	25	contraction of the second s
32		
33		
34		
35		
36		
3/		
30 20		
37 40		
41		
42		
43		
44		
45		
46		
47		
48		
49		
50 F1		
51 52		
52 52		
53 54		
55		
56		
57		
58		1

26 Abstract

27 Many animal species exist in fission-fusion societies, where the size and composition of

to portion of the second secon

network structure and fission-fusion dynamics [28, 29, 35]. We asked three main questions:

First, do group-level patterns emerge from distinct social interactions? Second, do individuals' traits influence their connectivity within social networks? Lastly, does genetic relatedness

undergird social interactions in this system? We investigated three bipartite interactions

(denning, sexual pairing, and parentage) and the drivers of individuals' centrality (Appendix).

Specifically, we tested (a) whether these three bipartite networks presented non-random modular

or nested structure (Appendix); (b) which attributes (body length, sex, and home range size) are

- associated with individuals' centrality in these three networks, and (c) whether interactions
- occurrence and or frequencies in the three social networks and home range overlap are
- significantly correlated with genetic relatedness among individuals (e.g., kin-based).

2 Materials and methods

2.1. Study system

A single population of western diamondback rattlesnakes in the Suizo Mountains (Pinal County, Arizona, USA) was studied for 15 consecutive years from 1 March 2001 to 31 December 2015 [28, 29, 33, 36]. The research site is 40 km SSE of the city of Florence, 8 km W of State Route 79. This region is designated as Sonoran Desert, Arizona Upland Desert-Scrub subdivision [33]. Data accumulated for this C. atrox population has contributed substantially to our understanding of the species' behavior, reproductive ecology, and life history in Arizona [28, 29, 37]. Key events of the annual cycle are summarized in Figure 1, but the typical phenology of this population is described for further clarity. Egress from communal dens is centered in late March to early April [28, 29, 33, 37]. In most cases egress lingers—from days to several weeks—and occurs in several phases, including basking at the den entrance (often in groups), making short-range movements, and returning to the den. The spring mating period (second mating season) occurs before migration movements to their spring home range areas. Courtship and coitus may occur at the den itself or in the general area. Male combat for priority-of-access to females also may occur but is rarely observed [28, 29]. Migration movements in March and April bring individuals to their spring and summer home ranges. Furthest straight-line distances traveled from communal dens to home ranges are from several dozen meters to over 2 km [28, 29, 33]; mating (first mating season), skin shedding, and hunting prev are the primary behavioral activities during this time [28, 29, 33], and except for the two distinct mating seasons, there is generally little contact observed among adults, especially males. In fall (late October through November) adult individuals initiate migration to return to their respective communal dens to re-establish long-term social groups (networks) lasting for up to five months (November through March). The most common social activity at the communal dens which can be observed in all winter months is termed "sun basking" and occurs at the entrance or alongside the den itself [28, 29, 37]. Females will sometimes alternate year-to-year from communal dens to overwintering singly in shelters such as rodent middens and small mammal burrows [28, 29]. Males show near absolute fidelity to communal dens but rarely overwinter privately in granitic rubble.

Figure 1. Annual cycle and phenology of behavioral, physiological, reproductive, and life history events for adult *Crotalus atrox* at Suizo Mountains (Pinal County, Arizona), and nearby areas, based on 15

- 141 consecutive years (2001–2015) of research [28, 29, 36–40]. Note: Shed Cycle refers to skin shedding
- 142 (ecdysis).
- 143

144 2.2 Collecting and processing subjects

- 145 Animals selected for this study were either collected at or near known communal dens during
- 146 egress in spring (March–April) or found in their spring-summer home range. Animals were
- 147 captured and processed as detailed in previous studies [28, 29, 36–39]. At capture, Global
- 148 Positioning System (GPS) coordinates were obtained, and subjects were measured (snout-vent
- length, tail length, head dimensions to the nearest millimeter; body mass to the nearest 1.0 g) and
- 150 sex confirmed (via probing) while under light anesthesia (isoflurane). Individuals were
- 151 photographed, implanted with a unique passive integrated transponder (PIT) tag (AVID, Inc.,
- 152 Norco, California, U.S.A.), and their proximal rattle segments were colored via marker. A focal
- 153 group of adult *C. atrox* collected from 2001-2010 were used in social network analyses (n = 50
- 154 focal animals: 22 males 28 females). Subjects were selected for radio-tracking based on size (
- 155 700 mm SVL) and good state-of-health. Each animal had an appropriately sized (5% body
- 156 mass) temperature-sensitive radio-transmitter (models SI-2T and AI-2T, 11-16 g; Holohil Inc.,
- 157 Carp, Ontario, Canada) surgically implanted within the coelom following general procedures
- used for snakes [46]. After processing, all subjects were released at their exact capture site.

1		
2		
3 ⊿	159	
4 5	160	2.3 Radio-tracking
6	161	Focal animals were radio-tracked minimally 2–4 times per month during winter. Tracking was
7	162	increased substantially—sometimes daily or twice daily—from early August through mid-
8	163	September, the period of birthing. During spring and fall, snakes were tracked weekly on
9	164	average. For each animal location, UTM coordinates were recorded using along with behavioral
10	165	data (particularly if associating with conspecifics), body and environment temperatures, feeding
11	166	and ecdysis status plant associations subject location (above or below the ground surface)
12	167	visible or not visible and health status [28, 29, 36–30]
13	168	Visible of not visible, and nearth status $[20, 29, 50-59]$.
14	100	2.4 Spotial applying
15	109	2.4 Spatial analyses
10 17	170	we estimated nome range sizes by creating 100% minimum convex polygons (MCPs) around
1/ 10	1/1	the outermost radiotelemetry locations for each snake in ArcGIS Pro 2.6.1. To produce a single
10	172	value for the degree of overlap for each possible pair combination of telemetered snakes, we
20	173	calculated the average overlap for the two individuals in each pair as $(AB/A + AB/B)/2$, where A
21	174	is the home range size of individual A, B is the home range size of individual B, and AB is the
22	175	area shared by both A and B. Using this method, we generated a pairwise matrix of average
23	176	home range overlap values [33].
24	177	
25	178	2.5 Genotype Data
26	179	All social network analyses performed in this study that incorporated DNA-based information
27	180	was accomplished using previously published data [28, 29, 33]. See these studies for all
28	181	procedures used in DNA sampling, extraction, genotyping, and parentage and relatedness
29 20	182	analysis
30 31	183	
32	184	2.7 Social network analysis
33	185	We built an interaction matrix for each social interaction considered (denning pairing and
34	185	parentage: Appendix). The denning network was a matrix of all male and female study subjects
35	100	parentage, Appendix). The defining network was a matrix of an male and female study subjects
36	18/	as rows and columns containing is and os indicating whether a given pair of all possible pair
37	188	combinations of snakes from either sex were observed sharing the same den (Fig. 2a) or not,
38	189	respectively. The pairing network was a matrix with females represented in columns and males
39	190	represented in rows, containing a series of 1s and 0s indicating whether each possible male-
40 41	191	female pair combination was observed engaging in any behavior associated with mating or not,
41 12	192	respectively; examples of pairing behavior included male-female pairs in copulation (Fig. 2b) or
42 // 3	193	whose bodies were in contact (e.g., males lying on females) or proximity during either mating
44	194	season. The parentage network was a matrix with females represented in columns and males
45	195	represented in rows, containing a series of 1s and 0s indicating whether each possible male-
46	196	female pair combination produced offspring or not, respectively; relatedness among individuals
47	197	was determined from tissues such as blood or shed skins from adults and neonates (Fig. 2c and
48	198	2d).
49	199	
50	-	
51		
52 52		
03 57		
55		
56		

- 57 58 59 60

- 227 To investigate whether individual-specific variables were associated with individual's centrality
- 228 in a network, we used generalized linear mixed models (GLMMs) where CC was the response
- 229 variable and sex, snout-vent length (SVL), body mass, and MCP were predictors. Since we
- 230 detected high correlation between SVL and body mass (Pearson's r = 0.87), we excluded body
- 231 mass from our models, given lower variation in SVL measurements among individuals [22, 27].
- 232 For snakes tracked more than one year, we used mean MCP size as a predictor of CC; adults in
- 233 this population have highly repeatable annual MCP sizes (R = 0.83, 95% CI: 0.69–0.90;
- 234 unpublished data). For each of the three separate networks, CC was calculated independently,
- 235 and used as the response variable in the models. In all models, we included the number of years
- 236 an individual was detected as a random factor to control for sampling variation among
- 237 individuals. Our analyses followed the general recommendations by Zuur and colleagues [48].
- All predictor variables were scaled by mean centering and dividing by the standard deviation 238

d the red by m.

273 reproductive behaviors (Fig. 3c). Males largely overwintered in communal dens but would

274 sometimes overwinter in isolation, including at sites far from communal shelters (Fig. 3b).

Females often gave birth far from communal shelters and overwintered privately much more than males (Fig. 3d).

Figure 3. Spatial data on our focal group (22 males, 28 females) of adult *Crotalus atrox*. A) Annual home ranges (minimum convex polygons; MCP) of males (blue) and females (orange) that were observed overwintering in communal dens (AD = den ID). B) Sites where males overwintered in isolation (pink diamonds) or communal dens in relation to their annual home range; C) Home ranges of males and females that were observed engaging in reproductive behaviors. D) Sites where females gave birth (blue triangles) and overwintered privately (pink circles) or in communal dens (white squares) in relation to their home range.

286 b) Home range overlap and relatedness

Mantel tests comparing home range (MCP) overlap with relatedness revealed there was no correlation between the degree of pairwise home range overlap and relatedness (r = 0.004, p > 0.05).

291 3.3 Social network analyses

292 a) Communal den occupants

- 293 With few exceptions, all telemetered individuals that used communal dens exhibited absolute
- fidelity to these sites over the 10-year period where snakes were consistently radio-tracked
- 295 (Table 1). For example, CA-1, the longest tracked snake in this study, showed fidelity to den
- AD1 for the seven winters it was tracked. Conversely, females CA-2 and CA-77 used a
- 297 communal shelter for only one winter and were otherwise observed overwintering privately.
- 298 Similarly, male CA-55 used a communal shelter twice in three winters (Table 1).
- **Table 1.** Data on the use of eight communal dens by a subset (11 adult females, 20 adult males)
- 300 of the focal group (subjects fitted with radio-transmitters) of adult *Crotalus atrox* studied in the
- 301 Suizo Mountains, Arizona (2001–2010). The focal group (N = 50) consisted of 22 adult males

321

Figure 4. Modularity of individuals' A) denning network, B) pairing network, and C) parentage network of *Crotalus atrox* subjects in this study. Inner boxes indicate subsets of individuals interacting preferentially with each other (i.e., modules). In A), individuals of both sexes can be at the x and y axis since multiple males and females may share a communal den. In C) color intensity indicates the number of offspring sired. In C), UM indicates "unidentified male" (sampled but not radio-tracked; see text). Nine unidentified males were genotyped in the analysis: UM 1–4, 7–9, and 10, 13. See [46].

329 GLMMs indicated that individuals' CC in the denning, pairing, and parentage networks were not

associated with individuals' morphology (SVL) and home range (MCP) (Table A1–A6). Sex was

a significant predictor only in the parentage network, with females having slightly higher CC than

- 332 males b{ = 0.016, 95% CI: -0.034, -0.002; Table A6).
- 333 Overall CC was low, varying from 0 to 0.14 in the denning network, 0 to 0.11 in the pairing
- network, and 0 to 0.08 in the parentage network (Table A7). Because many individuals were not
- observed interacting, it was common to have individuals whose CC = 0 (Table A7).
- 336 Mantel tests revealed no significant correlations between genetic relatedness and denning (r = -
- 337 0.138, p = 0.938), pairing (r = 0.135, p = 0.297), or parentage (r = -0.150, p = 0.775) networks,
- 338 which suggests that individuals interacting in modules were unlikely to be closely related.
- 339 4 Discussion

- interact with more socially connected individuals [42, 43]. Our results mirror, to some extent,
- 347 those of the first and only other study to incorporate social network analysis for a wild snake, the
- Arizona black rattlesnake, *Crotalus cerberus* [29, 38]. Adult male and female *C. cerberus*
- 349 exhibited non-random association and formed multiple subgroups at communal dens and
- 350 shelters, yet few dyads had strong associations. More studies are needed to understand the
- 351 structure of social networks of snakes in general, but we suspect most would not show nested
- structure. In sharp contrast, the social networks (particularly related to mating) of other terrestrial
 vertebrates including African lions [55], equids and other ungulates [56], great apes and other
- primates [57] and several squamates [31, 58, 59], are characterized by one or several males that
- dominate a group of females and likely are the only ones to interact with most or all partners in a
- 356 group [21].
- 357

358 The low CC values obtained reinforces the lack of nestedness and existence of modularity,

- 359 indicating that each focal subject interacted only with a few other individuals in the three social 360 networks examined. Furthermore, centrality was not significantly predicted by body size, home
- 361 range, sex, or genetic relatedness. In this social environment, individuals with large bodies or
- 362 large home ranges do not den, pair with more sexual partners, or produce more offspring than
- 363 smaller and/or spatially restricted individuals [46, 58]. Nonetheless, we found females had
- 364 greater centrality than males in the parentage network—meaning that they produce more
- 365 offspring with a greater number of partners than males—yet this effect, though statistically
- 366 significant, is not robust [39].
- 367

368 Genetic relatedness of our focal group was not correlated with denning, pairing, or parentage.

369 Spatial analyses revealed that home range overlap also was not significantly correlated with

- 370 relatedness; thus, social structure between pairs of individuals during the active season was not
- based on kin associations [29, 33; Supplemental Material]. Increasingly, studies of other
- terrestrial vertebrates demonstrate that group living and stable paired associations, for example,
- are not necessarily kin-biased or correlated with genetic relatedness [42, 60; but see 31, 61]. In
- network studies involving lizards, for example, relatedness and group living varies depending on the species (system) being investigated. Group living involves close relatives in some cases [8,
- 57.5 the species (system) being investigated. Group inving involves close relatives in some cases [6, 58, 62], yet in others, even in strongly connected individuals, social interactions are not defined
- by relatedness [30; but see 61]. As we discuss later, however, when a larger sample of subjects
- included unmarked adults (e.g., no radio-transmitters) was analyzed, the relationship of
- 379 communal denning and relatedness of *C. atrox* showed mixed results, with multiple communal
- dens containing related occupants [29, pp. 196-198. See Supplemental Information, Tables S1-
- 381 S8].

- 438 Communal denning is a type of clumped spacing behavior often defined as "aggregation" [29].
- However, with respect to *C. atrox* in this study, and likely other rattlesnake species, we abandon
- 440 use of the term "aggregation" and alter the lexicon by defining communal denning as *the*
- 441 *formation of social groups or colonies by individual preference.* We suggest that these groups
- 442 form and evolve through mutual attraction of individuals (regardless of members' relatedness)
- for cooperative benefits to survival and reproduction [6, 71, 75]. These social groups we
- 444 observed, whether kin- or non-kin-based, occur seasonally in a predictable manner. Importantly,
- these social groups involve only a subset of adult individuals, occurring in microhabitats that are
- not limited in the local population. These traits indicate that social groups are not just a result of
- 447 attraction to particular microhabitats. It is likely that communal denning behavior, such as in C.
- 448 *atrox* and other snakes, may be coordinated by way of conspecific attraction or familiarity,
- resulting in social (communication) networks which ultimately leads to the partitioning ofindividuals into subgroups and to the observed network modularity [17, 21, 75].
- 451

- 452 Remarkably, over the 15-year period of study, the focal group of adults showed near absolute
- 453 fidelity to communal den sites. Several females, however, alternated year-to-year from
- 454 communal dens to overwintering singly in shelters such as rodent middens and small mammal
- 455 burrows [28, 29]. Adult males in our population, on the other hand, never occupied these kinds
 - 455

tor Relieve Maria

tor Relieve Maria

- 575 were obtained from the Arizona Game and Fish Department [Clark et al. 2014; Levine et al.
- 576 2021].
- 577
- 578 **Data accessibility**. The data used in the present analysis are available from the Dryad Digital
- 579 Repository: <u>https://doi.org/10.5061/dryad.3xsj3txjr</u>

to Reticu only

to periodo and a second second

601 **References**

- 602 1. Darwin C. 1859 On the origin of species by means of natural selection. John Murray,
 603 London, United Kingdom.
- 604
- 605 2. Lorenz K. 1937 On the formation of the concept of instinct. *Nat. Sci.* **25**, 289–300.
- 606
- 3. Tinbergen N. 1963 On aims and methods of ethology. *Zeitschrift für Tier psychologie* 20, 410–433.
- 609

610 4. Goodall J. 2010 In the shadow of man. 50th anniversary of Gombe edition. Boston, MA: rtal9invest(LoretO121 f* Q a 1.6.n -13.79901 T TD a 1 5m 727t500nston. MA:)Ti 0 -13Sex 1 5-136.nlm 72 66

3		
4	647	18. Doody SJ, Dinets V, Burghardt GM. 2021 The secret social lives of reptiles. Baltimore, MD:
5	648	Johns Hopkins University Press.
6	649	
7	650	19. Allison PD, Liker JK. 1982 Analyzing sequential categorical data on dyadic interaction: a
8	651	comment on Gottman. Psychol. Bull. 91, 393–403.
9	652	
10	653	20. Bakeman R. 1997 Observing interaction: an introduction to sequential analysis. New York,
11	654	NY: Cambridge University Press.
12	655	
13	656	21. Krause J, James R, Franks DW, Croft DP. 2015 Animal social networks. Oxford, UK: Oxford
14	657	University Press.
15	658	
16	659	22. Pinter-Wollman N, Hobson EA, Smith JE, Edelman AJ, Shizuka D, de Silva S, Waters
17	660	JS, Prager SD, Sasaki T, Wittemyer G, Fewell J, McDonald DB. 2014 The dynamics of
18	661	animal social networks: analytical, conceptual, and theoretical advances. <i>Behav. Ecol.</i> 25.
19	662	242e255.
20	663	
21	664	23. Croft DP, Darden SK, Wey TW. 2016 Current directions in animal social networks. Curr.
22	nalvt	Opinions Behav. Sci. 12, 52–58. (doi.org/10.1016/j.cobeha.2016.09.001)
23	J.	, , , , , , , , , , , , , , , , , , ,
24	667	24. Webber OMR. Vander Wal E. 2019 Trends and perspectives on the use of animal social
25	668	network analysis in behavioral ecology: a bibliometric approach. Anim. Behav. 149, 77–87.
26	669	
27	670	25. Farine DR, Whitehead H, 2015 Constructing, conducting and interpreting animal social
28	671	network analysis. J. Anim. Ecol. 84, 144–1163. (doi: 10.1111/1365-2656.12418)nal72
29	673	26. Farine DR. 2017. A guide to null models for animal social networks. <i>Methods Ecol. Evol.</i> 8.
30	674	1309–1320.
31	675	
32	676	27. Fortin M-J. Dale MRT. Brimacombe C. 2021 Network ecology in dynamic landscapes. <i>Proc.</i>
33	nal77	<i>R. Soc. B</i> 288, 20201889. (doi: org/10.1098/rspb.2020.1889)
34	678	
35	679	28. Schuett GW, Repp RA, Spencer CL, Beamann K, Painter CW, 2016a Crotalus atrox.
36	680	Western Diamond-backed Rattlesnake. In <i>Rattlesnakes of Arizona</i> , vol. 1 (eds. GW Schuett,
37	681	MJ Feldner, CF Smith, RS Reiserer), pp. 333–394, Rodeo, NM: ECO Publishing, nal82
38	683	29. Schuett GW, Clark RW, Repp RA, Amarello M, Smith CF, Greene HW, 2016b Social
39	684	behavior of rattlesnakes: a shifting paradigm. In <i>Rattlesnakes of Arizona, vol. 2</i> (eds. GW
40	685	Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 161–244, Rodeo, NM: ECO Publishing.
41	686	
42	687	30. Godfrey SS, Anasri TH, Gardner MG, Farine DR, Bull CM. 2014 A contact-based social
43	688	network of lizards is defined by low genetic relatedness among strongly connected
44	689	individuals. Anim. Behav. 97, 35–43.
45	690	
46	691	31. Godfrey SS. 2015. Linking lizards: social networks in reptiles. In Animal social networks
47	692	(eds. J Krause, R James, DW Franks, DP Croft). pp. 197–207. Oxford, UK: Oxford
48		
49		
50		
51		
52		2
53		

na2

- 693 University Press.
- 694
- 695 32. Amarello M. 2012 Social Snakes? Non-random association patterns detected in a population 696 of Arizona black rattlesnakes (Crotalus cerberus). Unpublished thesis. Arizona State 697 University, Tempe, AZ: USA.
- 698
- 699 33. Clark RW, Schuett GW, Repp RA, Amarello M, Smith CF, Herrmann H-W. 2014 Mating 700 systems, reproductive success, and sexual selection in a secretive species: a case study of the 701 western diamond-backed rattlesnake, Crotalus atrox. PLoS ONE 9, e90616.
- 702
- 703 34. Klauber LM. 1956 Rattlesnakes. Their habits, life histories, and influence on mankind, 2 704 vols. Berkeley and Los Angeles, CA: University of California Press.
- 705

lkes. Tr. Igeles, CA:

739 740	44. Freeman LC. 1979 Centrality in social networks: conceptual clarification. <i>Social Networks</i> 1, 215–239.
741	
742 743	 Martín González AM, Dalsgaard B, Olesen JM. 2010 Centrality measures and the importance of generalist species in pollination networks. <i>Ecol. Complex.</i> 7, 36–43.
744	
745 746 747	46. Dormann CF, Fründ J, Blüthgen N, Gruber B. 2009. Indices, graphs and null models: analyzing bipartite ecological networks. <i>Open Ecol. Journal</i> 2 , 7–2.
748 749 750	47. R core team 2022. R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. URL https://www.R-project.org
750 751 752 753	48. Zuur AF, Ieno EN, Walker, NJ, Saveliev AA, Smith GM. 2009 Mixed effects models and extensions in ecology with R. New York, NY: Springer.
755 755 756	49. Skaug AH et al. 2018. glmmADMB - Generalized linear mixed models using AD Model Builder. R package v0.8.3.4 http://glmmadmb.r-forge.r-project.org.
757 758 759	50. Barton K. 2019 MuMIn: multi-model inference. R package version 1.43.6. https://CRAN.R-project.org/package=MuMIn.
760 761 762	51. Burnham KP, Anderson DR. 2002. Model selection and multimodel inference: a practical information-theoretic approach. 2 nd edn. Berlin: Springer.
763 764 765 766	52. Thioulouse J, Dray S, Dufour A, Siberchicot A, Jombart T, Pavoine S. 2018 <i>Multivariate analysis of ecological data with ade4</i> . New York, NY: Springer. (doi: 10.1007/978-1-4939-8850-1)

- 58. O'Connor D, Shine R. 2003 Lizards in 'nuclear families': a novel reptilian social system in
 Egernia saxatilis (Scincidae). *Mol. Ecol.* 12, 743–752.
- 788
- 59. Bull CM, Godfrey SS, Gordon DM 2012 Social networks and the spread of *Salmonella* in a
 sleepy lizard population. *Mol. Ecol.* 21, 4386–43 1Gcnn a

tor policy of the second secon

830 73. Hoss SK, Deutschman DH, Booth W, Clark RW. 2015 Post birth separation affects the

to Rouin Mon

- behavior in a litter of neonate *Crotalus horridus* (Timber Rattlesnake). *Southeast. Nat.* 4,
 723-730.
- 923 7: 924
- 925 100. Mason RT, Parker MR. 2010 Social behavior and pheromonal communication in reptiles. J.
 926 Comp. Physiol. A, Neuroethol., Sensory, Neural, and Behav. Physiol. 196, 729–749.
- 927

tor Review Only

947 948	Appendix
949 950 951	Definitions of important terms in social network ecology that were used in the present study.
952 953 954 955	<i>Association index</i> – Any measure of the strength of association between two species [23, 30]. <i>Centrality</i> – The extent to which a given node (e.g., individual) occupies a position that is important in the structure of the network [23, 30].
956 957 958 959	Closeness centrality – A measure of centrality that quantifies the proximity of a node (e.g., individual) to all other nodes in the network and thus indicates nodes that are more connected and highly influential in the social network [65, 66], $Edge - A$ line between two nodes (e.g., individuals) representing a social interaction [23, 30]
960 961 962 963	<i>Fission-Fusion Dynamics</i> – The extent of variation in spatial cohesion and individual membership in a group over time [47].
963 964 965 966 967 968	<i>Modularity</i> – A measure of subsets (groups, clusters, or communities) of entities (e.g., individuals) that interact with each other more frequently than with other individuals in a population; groups or modules of highly connected individuals. High modularity networks have dense connections between nodes within modules but few connections (between nodes) in different modules [30, 60].
909 970 971	<i>Nestedness</i> – Interactions of less connected elements (e.g., individuals) that form proper subsets of the interactions of more connected elements, e.g., individuals [30, 61, 62, 73].
972 973 974	Node – An object in a network, such as an individual [23, 30].
975 976 977 978 979	<i>Social Preference</i> – Selection of one element (e.g., individual) more frequently over another element (e.g., individual) in the context of a social environment. Nonrandom, repeated interactions with certain individuals that are the foundation of social relationships. Also termed preferred association [20, 21 23, 30].
980 081	Network Analysis Details
981 982 983 984 985	In an interaction matrix, each node (column <i>i</i> or row <i>j</i>) represents an individual and each social interaction observed between two individuals (<i>aij</i>) is an edge. Modularity occurs when subsets of individuals interact more among themselves than with other individuals in the population, forming modules of highly connectriNetw-15h(984)-1500 (ine)1 (lements, e.g., i)1 99 TD.69ilements, e.g., iE1he

991992 where *n*

to policy only

Sex	0.026	0.014	-0.001	0.054
МСР	-0.010	0.007	-0.022	0.003
SVL	0.001	0.007	-0.014	0.014

Table A3. Model selection results (encompassing 95% of the total model weight) for predicting 1008

.ts (

MCP	0.004	0.004	-0.005	0.011

Sex -0.004

to Review only

CA094f	female	0.04419564	CA094f	female	0.00000000	CA006m	male	0.00000000
CA095f	female	0.00000000	CA095f	female	0.00000000	CA076m	male	0.00000000
CA100f	female	0.00000000	CA100f	female	0.00000000	CA079m	male	0.00000000
CA101f	female	0.00000000	CA101f	female	0.00000000	CA092m	male	0.00000000
CA102f	female	0.04419564	CA102f	female	0.07784758	CA096m	male	0.00000000
CA112f	female	0.00000000	CA112f	female	0.00000000	CA097m	male	0.04761905
CA113f	female	0.00000000	CA113f	female	0.05462988	CA098m	male	0.00000000
CA114f	female	0.00000000	CA114f	female	0.00000000	CA099m	male	0.00000000
CA115f	female	0.00000000	CA115f	female	0.00000000	CA117m	male	0.00000000
CA116f	female	0.00000000	CA116f	female	0.00000000	CA122m	male	0.00000000
CA120f	female	0.00000000	CA120f	female	0.00000000			
CA121f	female	0.00000000	CA121f	female	0.00000000			
CA124f	female	0.00000000	CA124f	female				

C CA. CA11L , CA120f JOO CA121f fc JOOO CA124f fema

CA040m male 0.000000000 CA040m male

for Review Only

CA119m	male	0.000000000	CA119m	male	0.00000000
CA122m	male	0.000000000	CA122m	male	0.00000000
CA123m	male	0.000000000	CA123m	male	0.00000000
CA126m	male	0.000000000			

to Review Only

 Table A8. Predictor variable measured for each C. atrox

tor Review Org

3

1038

1							
2 3	C + 0 C						0
4	CA063f	female	910	386	NA	NA	0
5	CA064f	female	940	513	407.71	0.93725	3
6	CA065f	female	790	347	NA	NA	0
7	CA066f	female	845	393	501.89	1.40	2
8	CA070f	female	910	485	NA	NA	0
10	CA071f	female	940	454	NA	NA	0
11	CA077f	female	850	379	963.32	4.41	1
12	CA081f	female	845	419.5	2085.79	7.23	3
13	CA085f	female	775	243	NA	NA	0
14 15	CA086f	female	350	18.5	NA	NA	0
16	CA087f	female	705	257.3	NA	NA	0
17	CA089f	female	310	21	NA	NA	0
18	CA008f	female	845	347	NA	NA	0
19	$C\Delta 090f$	female	298	19	NΔ	ΝΔ	0
20	$C \wedge 002f$	fomala	270	200	044.4	1NA 2 25	2
21 22	CA0931	fomala	823 775	399	544.4 622 20	3.33 1.97	2
23	CA0941	female	005	370	035.20	1.87	ے 1
24	CA0951	lemale	905	470	048.33	1.82	1
25	CA103m	male	910	505	NA	NA	0
26	CA104m	male	900	429	NA	NA	0
27	CA105m	male	1003	625	NA	NA	0
29	CA106m	male	700	265	NA	NA	0
30	CA107m	male	1040	905	NA	NA	0
31	CA108m	male	810	405	NA	NA	0
32	CA109m	male	1004	816	NA	NA	0
33 24	CA110m	male	780	386	NA	NA	0
35	CA111m	male	875	451	NA	NA	0
36	CA117m	male	965	535	1326.72	6.02	2
37	CA118m	male	875	453	NA	NA	0
38	CA119m	male	1020	604	NA	NA	0
39	CA122m	male	864	433	1351.75	9.18	1
40	CA123m	male	786	384	NA	NA	0
42	CA126m	male	900	632	NA	NA	0
43	CA127m	male	935	600	NA	NA	0
44	CA128m	male	1070	842	NA	NA	0
45 46	CA129m	male	1060	775	NA	NA	0
40	$C\Delta 130m$	male	1045	859	NΔ	NΔ	0
48	CA132m	male	1045	740	NA NA	NA	0
49	CA132m	mala	729	740	INA NA	NA	0
50	CA154III CA012m	male	1060	243	NA 1722.02	INA 17.95	0
51	CA013m	male	1060	0/3	1723.93	17.85	3
52	CA018m	male	950	470	NA	NA	0
54	CA001m	male	NA	NA	NA	NA	0
55	CA020m	male	850	452	NA	NA	0
56	CA021m	male	960	563	NA	NA	0
5/ 59					2		
59					3		

CA022m male

to periodo of the second

1									
2 3		$C \land 0 ? m$ mala	075	507 5	NI A	NI A	0		
4		CA082m male	850	<i>J</i> 97. <i>J</i> <i>A</i> 13.5	NA NA	NΑ	0		
5		CA08/m male	980	633	NΔ	ΝΔ	0		
7		CA088m male	1005	622	NA	NA	0		
8		CA091m male	320	24	NA	NA	0		
9		CA092m male	980	686	1491 76	13 33	1		
10 11		CA096m male	920	570	2366 75	21.94	2		
12		CA097m male	965	653	2024 56	16 69	2		
13		CA098m male	1040	859	2334 71	17.95	2		
14 15		CA099m male	1065	735	NA	NA	$\frac{2}{0}$		
15 16		CA009m male	990	517	NA	NA	0		
17			<i>,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	517	1 17 1		0		
18	1039								
19 20			A. 15 . 8. 4	A STATE OF STATE					
21			P. Bartin Land						
22	wanaryan.							C THE MARK THE REAL	
23 24					•			ALLANY MICHANNA AND AND AND AND AND AND AND AND AND	
25									
26				ole <mark>n dine-</mark> samoan	n - Theres aura	and the second second	and a second second second		
27									
28 29									
30									
31									
32									
33									
34 35	ne service and the second s	:					<u>.</u>		
3Tj	T* (2600 g <mark>//TT1 1</mark>	2 Tf 313.28399 557.596 Td	(NA)TJ (ET Q q 1	0 0 - 15f995j T	* (28)Tj T* (2	29)Tj.T* (30)Tj.T*	<mark>(31)Tj T* (3</mark> 2)Tj T* ((jeM7.5j
	"	alallaalliila Xiitaalaakiin Xiialiilalaise**** 	" %% %%						
								Nele (19 22)	
	1040								
	1041 Figur	e A1. Minimum convex	k polygo	ons (MCI	P) showing h	ome ranges	for females CA-	02 and	

- CA-77 that alternated between communal dens (den ID: AD-1 and AD-5) and private winter 1042 1043 shelters in different years. Note the consistency in CA-02's annual home range size and shape.
- See main text for additional details. 1044
- 1045

Supplementary Material from "Fission-Fusion Dynamics in the Social Networks of a North American Pitviper"

Rattlesnakes in social network analysis

Numerous moderate- to large-sized species of rattlesnakes (e.g., *Crotalus atrox, C. cerberus, C. oreganus, C. stephensi*, and *C. viridis*) possess several attributes that allow their study in nature to be manageable and thus good candidate models for longitudinal studies using network analysis. The changing academic milieu and publication stance on social behavior in animals, in general, and rattlesnakes and other reptiles, in particular, is summarized by Schuett and colleagues [1, 2] and inspired by Doody and colleagues [3, 4] and Van Dyke and colleagues [5].

1) In the five rattlesnake taxa mentioned above, individuals often assemble to form highly localized groups (two to several hundred) in communal winter shelters (communal dens) from fall to spring, or even longer [1, 2, 6–9]. Rarely observed in other species of snakes, this attribute permits one not only to observe most adult snakes (and sometimes neonates and juveniles) of a population [1, 2, 8, 10–14], but also to capture them for processing such as inserting permanent PIT tags (identification), performing radio-telemetry surgery (radio-tracking), and procuring tissues (e.g., blood, scale clips) for subsequent DNA analysis [2, 9]. See Schuett and colleagues [1, 2, 11] for a discussion of other attributes of communal shelters in rattlesnakes for studies of social behavior.

2) With the advent of affordable commercial radio-telemetry for terrestrial snakes since the late 1980s, it is now possible to implant radio-transmitters into the body cavity of moderate- to large-sized individuals for long periods (e.g., months to years) before removal or replacement [15]. Radio-telemetry provides a unique radio-signal for each individual. Coupled with the use of PIT tags and other forms of identification methods (e.g., unique painting of rattles, photographs), radio-tracking and locating individuals can be done with high precision.

3) As a group, rattlesnakes tend to be slow-moving, ambush (sit-and-wait) predators [16, 17]. Consequently, their movements are limited and distances traveled per movement session (e.g., evening) tend to be short (e.g. 0.1–1km). Thus, unlike many other organisms such as birds, felids, and ungulates, radio-tracking can be done by foot and managed on a daily basis if needed. Furthermore, when compared to other snake species, rattlesnakes as sit-and-wait predators are often exposed on the ground-surface and visible for observation purposes [17; R. Repp and G. Schuett, pers. observ., 2001–2015].

4) Nearly all large species of rattlesnakes are long-lived, with some attaining lifespans exceeding four decades [18–19]. Longevity is especially desirable in that overlapping generations can be studied simultaneously and by a single researcher. Maturation in females is from 3 to 12 years dependent on the species and location [18–19].

Communal denning and relatedness analysis

torperies on the second

CAMD2_S6 M

tor Review Org

CASD-083	М	CA-	u	u	u	u	u	u	u	u	u	HS	u	x
		83												

tor Relieve Maria

CAMD2_S1 M CA-13 6

for Review Only

Table S4. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-6 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

Relatedness matrix			CASD-044	CASD-046	CAMD00 7	CASD- 068	CASD- 082	CASD- 084	CASD- 111
			F	F	М	М	М	М	М
			CA-44	CA-46	CA-7	CA-68	CA-82	CA-84	CA-111
CASD-044	F	CA-44	х						
CASD-046	F	CA-46	0.04	х					
CAMD007	М	CA-7	0	0.03	х				
CASD-068	М	CA-68	0.03	0.05	0	х			
CASD-082	М	CA-82	0.06	0	0	0.03	х		
CASD-084	М	CA-84	0.04	0.05	0	0.03	0.05	х	
CASD-111	М	CA-111	0.04	0	0	0.04	0.03	0	x

Relationship matrix

CASD-044 CASD-046 CAMD00

Relate dness matrix			CASD -047	CASD -058	CASD -040	CASD -076	CASD -078	CASD -079	CASD -092	CASD -043	CASD -073	CASD -074	CASD -X057
			F	F	М	М	М	М	М	М	М	М	М
			CA-47	CA-58	CA-40	CA-76	CA-78	CA-79	CA-92	CA-43	CA-73	CA-74	CA- x57
CASD -047	F	CA-47	x										
CASD -058	F	CA-58	0	x									
CASD -040	М	CA-40	0	0	х								
CASD -076	М	CA-76	0	0.02	0.06	x							
CASD -078	М	CA-78	0	0	0.09	0	x						
CASD -079	М	CA-79	0	0.06	0.06	0.03	0	х					
CASD -092	М	CA-92	0.02	0	0	0	0	0	х				
CASD -043	М	CA-43	0	0	0.02	0	0	0.03	0	х			
CASD -073	М	CA-73	0.002	0.01	0	0.06	0	0	0	0	х		
CASD -074	М	CA-74	0	0.007	0.06	0.07	0	0	0	0	0	x	
CASD -X057	М	CA- x57	0	0.02	0	0	0.08	0	0	0.003	0	0.05	x
Relation matrix	nship		CASD -047	CASD -058	CASD -040	CASD -076	CASD -078	CASD -079	CASD -092	CASD -043	CASD -073	CASD -074	CASD -X057
			F	F	М	М	М	М	М	М	М	М	М
			CA-47	CA-58	CA-40	CA-76	CA-78	CA-79	CA-92	CA-43	CA-73	CA-74	CA- x57
CASD -047	F	CA-47	x										
CASD -058	F	CA-58	u	x									
CASD -040	М	CA-40	u	u	x								
CASD -076	М	CA-76	u	u	u	x							
CASD -078	М	CA-78	u	u	u	u	X						

CASD -079	М	CA-79	u	u	u	u	u	x					
CASD -092	М	CA-92	u	u	u	u	u	u	x				
CASD -043	М	CA-43	u	u	u	u	u	u	u	x			
CASD -073	М	CA-73	u	u	u	u	u	u	u	u	x		
CASD -074	М	CA-74	u	u	u	u	u	u	u	u	u	X	
CASD -X057	М	CA- x57	u	u	u	u	u	u	u	u	u	u	X

Table S6. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den AD-8 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014).

Relatedness matrix			CASD-064	CASD-101	CASD-102	CASD-097
			F	F	F	М
			CA-64	CA-101	CA-102	CA-97
CASD-064	F	CA-64	x			
CASD-101	F	CA-101	0	x		
CASD-102	F	CA-102	0.07	0.04	х	
CASD-097	М	CA-97	0	0.01	0	x
Relationship matrix	C		CASD-064	CASD-101	CASD-102	CASD-097
			F	F	F	Μ
			CA-64	CA-101	CA-102	CA-97
CASD-064	F	CA-64	X			
CASD-101	F	CA-101	u	X		
CASD-102	F	CA-102	u			

R matrix			CASD-040	CASD-052	CASD-053
			М	М	М
			CA-40	CA-52	CA-53
CASD-040	М	CA-40	X		
CASD-052	М	CA-52	0	X	
CASD-053	М	CA-53	0.24	0.02	X
Relationship matr	ix		CASD-040	CASD-052	CASD-053
			М	М	М
			CA-40	CA-52	CA-53
CASD-040	М	CA-40	X		
CASD-052	М	CA-52	U	Х	
CASD-053	М	CA-53	HS	U	X

Table S8. Genotype results of adult Western Diamond-backed Rattlesnakes (*Crotalus atrox*) from Den 1 at the Suizo Mountains, AZ, USA. Site was sampled from 2001 to 2010. HS = half-sibs. See Clark et al. (2014) and Schuett et al. (2014). There was no relatedness between these two male snakes.Refs bnc(en these t x)Tj/TT14.5

CASD-096	М	CA-96	
CASD- x023	M	CA-x23	
		'	

- Doody SJ, Dinets V, Burghardt GM. 2021 *The secret social lives of reptiles*. Baltimore, MD: Johns Hopkins University Press.
- 5. Van Dyke JU, Thompson MB, Burridge CP, Castelli MA, Clulow S, Dissanayake, DSB, Dong CM, Doody JS, Edwards DL, Ezaz, T, Friesen CR, Gardner MG, et al. 2021 Australian lizards are outstanding models for reproductive biology research. *Aust. J. Zool.* 68, 168–199.
- 6. Klauber LM. 1956 *Rattlesnakes*. *Their habits, life histories, and influence on mankind, 2 vols*. Berkeley and Los Angeles, CA: University of California Press.
- Sexton O, Jacobson JP, Bramble JE. 1992 Geographic variation in some activities associated with hibernation in Neartic pitvipers. In *Biology of the pitvipers* (eds. JA Campbell, ED Brodie, Jr.), pp. 337–346. Tyler, TX: Selva.
- Amarello M. 2012 Social Snakes? Non-random association patterns detected in a population of Arizona black rattlesnakes (*Crotalus cerberus*). Unpublished thesis. Arizona State University, Tempe, AZ: USA.
- 9. Clark RW, Schuett GW, Repp RA, Amarello M, Smith CF, Herrmann H-W. 2014 Mating systems, reproductive success, and sexual selection in a secretive species: a case study of the western diamond-backed rattlesnake, *Crotalus atrox. PLoS ONE* **9**, e90616.
- Beck DD. 1995 Ecology and energetics of three sympatric rattlesnake species in the Sonoran Desert.
 J. Herpetol. 29, 211–223.
- 11. Repp RA. 1998 Wintertime observations on five species of reptiles in the Tucson area: shelter site selections/fidelity to shelter sites/notes on behavior. *Bull. Chicago Herpetol. Soc.* 33, 49–56.
- Diller LV, Wallace RL. 2002 Growth, reproduction and survival in a population of *Crotalus viridis* in north central Idaho. *Herpetol. Monogr.* 16, 26–45.

13. Ashton KG. 2003 Movements and mating behavior of adult male midget faded rattlesnakes, Crotalus at that the context of the factor of the f snow. Southwest. Nat. 53, 108–114.

- Beaupre SJ 2016 Novel tracking and remote monitoring technologies: Applications to studying wild rattlesnakes. In *Rattlesnakes of Arizona*, vol. 2 (eds. GW Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 58–91. Rodeo, NM: ECO Publishing
- 16. Nowak EN, Theimer TC, Schuett GW. 2008 Functional and numeric responses of predators: where do vipers fit in the traditional paradigms? *Biol. Rev.* **83**, 601–620.
- 17. Clark RW. 2016 The hunting and feeding behavior of wild rattlesnakes. In *Rattlesnakes of Arizona*, *vol. 2* (eds. GW Schuett, MJ Feldner, CF Smith, RS Reiserer), pp. 91–118. Rodeo, NM: ECO Publishing.
- Brown WS. 1993 Biology, status, and management of the timber rattlesnake (*Crotalus horridus*): a guide for conservation. *Herpetol. Circ.* 22, 1–78.
- 19. Brown WS. 2016 Lifetime reproduction in a northern metapopulation of timber rattlesnakes (*Crotalus horridus*). *Herpetologica* **72**, 331–342.
- 20. Kalinowski ST, Taper ML (2006) Maximum likelihood estimation of the frequency of null alleles at microsatellite loci. *Conserv. Genet.* **7**, 991–995
- 21. Jones A, Clayton M, Small K, Paczolt A, Ratterman N. 2010 A practical guide to methods of parentage analysis. *Mol. Ecol. Res.* **10**, 6–30.

Figure 1. Annual cycle and phenology of behavioral, physiological, reproductive, and life history events for adult Crotalus atrox at Suizo Mountains (Pinal County, Arizona), and nearby areas, based on 15 consecutive years (2001–2015) of research [28, 29, 36–40]. Note: Shed Cycle refers to skin shedding (ecdysis).

254x186mm (300 x 300 DPI)

Figure 3. Spatial data on our focal group (22 males, 28 females) of adult Crotalus atrox. A) Annual home ranges (minimum convex polygons; MCP) of males (blue) and females (orange) that were observed overwintering in communal dens (AD = den ID). B) Sites where males overwintered in isolation (pink diamonds) or communal dens in relation to their annual home range; C) Home ranges of males and females that were observed engaging in reproductive behaviors. D) Sites where females gave birth (blue triangles) and overwintered privately (pink circles) or in communal dens (white squares) in relation to their home range.

165x128mm (220 x 220 DPI)

Figure 4. Modularity of individuals' A) denning network, B) pairing network, and C) parentage network of Crotalus atrox subjects in this study. Inner boxes indicate subsets of individuals interacting preferentially with each other (i.e., modules). In A), individuals of both sexes can be at the x and y axis since multiple males and females may share a communal den. In C) color intensity indicates the number of offspring sired. In C), UM indicates "unidentified male" (sampled but not radio-tracked; see text). Nine unidentified males were genotyped in the analysis: UM 1–4, 7–9, and 10, 13. See [46].

254x127mm (96 x 96 DPI)