“Killer electrons” that travel at nearly light speed inside Earth's Van Allen belts — the zone that surrounds the planet and traps energetic charged particles — pose a major threat to equipment in space by causing malfunctions in electronics.
In a landmark achievement for the fight against HIV, Sweden has attained the critical “95-95-95” target on the path to tackling the disease. Advanced bioinformatics modeling developed by a team from Los Alamos National Laboratory was deployed to track and verify the country’s progress toward the Joint United Nations Programme on HIV/AIDS (UNAIDS) and World Health Organization target.
Allison Aiken, a staff scientist in the Earth and Environmental Sciences division at Los Alamos National Laboratory, is the lead of a new Atmospheric Radiation Measurement (ARM) user facility campaign called Desert-Urban SysTem IntegratEd AtmospherIc Monsoon, or DUSTIEAIM, in the Southwestern United States. This campaign will take place in Phoenix from April 2026 to September 2027, and will utilize an ARM mobile atmospheric observatory to collect continuous data over the course of 18 months.
The ChemCam instrument, developed at Los Alamos National Laboratory, recently zapped its laser for the 1 millionth time on Mars. Sitting on top of NASA’s Curiosity rover, ChemCam has been helping make groundbreaking discoveries since 2012.
A research team using the ChemCam instrument onboard NASA’s Curiosity rover discovered higher-than-usual amounts of manganese in lakebed rocks within Gale Crater on Mars, which indicates that the sediments were formed in a river, delta, or near the shoreline of an ancient lake. The results were published today in Journal of Geophysical Research: Planets.
A research team at Los Alamos National Laboratory is using artificial intelligence to address several critical shortcomings in large-scale malware analysis, making significant advancements in the classification of Microsoft Windows malware and paving the way for enhanced cybersecurity measures. Using their approach, the team set a new world record in classifying malware families.
New research shows that atmospheric pressure fluctuations that pull gases up from underground could be responsible for releasing subsurface methane into Mars’ atmosphere; knowing when and where to look for methane can help the Curiosity rover search for signs of life.
A new, potentially revolutionary artificial intelligence framework called “Blackout Diffusion” generates images from a completely empty picture, meaning that the machine-learning algorithm, unlike other generative diffusion models, does not require initiating a “random seed” to get started.
The elements above iron on the periodic table are thought to be created in cataclysmic explosions like the merger of two neutron stars or in rare classes of supernovae. New research suggests fission may operate in the cosmos during the creation of the heavy elements. Combing through data on a variety of elements that reside in very old stars, researchers have found a potential signature of fission, indicating that nature is likely to produce superheavy nuclei beyond the heaviest elements on the periodic table.
Two labs within Los Alamos National Laboratory have earned recognition for their sustainability-conscious culture: the Chain Lab in Genomics and Bioanalytics and the Center for Integrated Nanotechnologies (CINT).
Recognizing the challenges of running sophisticated applications including complex simulations, data analytics, artificial intelligence and heterogenous workflows at scale in hybrid computing environments, multiple institutions are forming an open-source community -- OCHAMI -- to develop and support a framework for better systems management.
A machine-learning algorithm demonstrated the capability to process data that exceeds a computer’s available memory by identifying a massive data set’s key features and dividing them into manageable batches that don’t choke computer hardware. Developed at Los Alamos National Laboratory, the algorithm set a world record for factorizing huge data sets during a test run on Oak Ridge National Laboratory’s Summit, the world’s fifth-fastest supercomputer.
Equally efficient on laptops and supercomputers, the highly scalable algorithm solves hardware bottlenecks that prevent processing information from data-rich applications in cancer research, satellite imagery, social media networks, national security science and earthquake research, to name just a few.
A potentially game-changing theoretical approach to quantum computing hardware avoids much of the problematic complexity found in current quantum computers. The strategy implements an algorithm in natural quantum interactions to process a variety of real-world problems faster than classical computers or conventional gate-based quantum computers can.
New observations of mud cracks made by the Curiosity Rover show that high-frequency, wet-dry cycling occurred in early Martian surface environments, indicating that the red planet may have once seen seasonal weather patterns or even flash floods.
In a banner year for Los Alamos National Laboratory in the competition for Department of Energy Early Career Research Awards, four scientists nabbed multiyear funding for their projects.
Rising temperatures and changes in precipitation are driving increases to streamflow in areas of high-latitude North America where permafrost dominates the landscape.
New theoretical research proves that machine learning on quantum computers requires far simpler data than previously believed. The finding paves a path to maximizing the usability of today’s noisy, intermediate-scale quantum computers for simulating quantum systems and other tasks better than classical digital computers, while also offering promise for optimizing quantum sensors.